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A BOUNDARY VALUE PROBLEM FOR AN ELLIPTIC EQUATION
WITH ASYMMETRIC COEFFICIENTS IN A NONSCHLICHT DOMAIN

V. V. Denisenko UDC 517.946+519.34

Abstract: We propose some minimum principle for the quadratic energy functional of an elliptic
boundary value problem describing a transport process with asymmetric tensor coefficients in a non-
schlicht domain. We prove the existence and uniqueness of a weak solution in the energy space. The
energy norm equals the entropy production rate.
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1. Introduction. The operators are not self-adjoint of the elliptic boundary value problems tra-
ditional to description of transport processes in gyrotropic media. Therefore, we cannot apply to them
the energy methods of [1] enabling the construction of effective approximate and numeric algorithms.
Starting with [2], the author poses and studies some new boundary value problems that describe the
same physical processes but involve positive symmetric operators. For various two-dimensional boundary
value problems the author has justified the minimum principle for the corresponding quadratic energy
functional. He has also constructed a difference-variational scheme and demonstrated the effectiveness
of the multigrid method [3]. The three-dimensional problem is considered in [4].

A typical example of a gyrotropic conductor is a partially ionized plasma in a magnetic field. Math-
ematical modeling of electric fields in Earth’s ionosphere leads to a two-dimensional problem in a non-
schlicht domain [5]. Under some additional assumptions [5], it reduces to a problem in a schlicht simply
connected domain. This problem is restated in [6] as an elliptic boundary value problem with a symmetric
operator for which the minimum principle is justified for the quadratic energy functional.

The aim of the present article is to extend the energy method to the problem in a nonschlicht domain.
We give proofs only in the case of a boundary condition on the exterior boundary which corresponds

to extraction of a near-boundary singularity. In the last section we merely list changes in the statements
and proofs for simpler problems.

2. Statement of a boundary value problem. In the mathematical modeling of large-scale electric
fields, we usually consider Earth’s ionosphere as a two-dimensional conductor and solve a quasistationary
electrical conduction problem [5]. After some transformations, there appears a problem in a domain Ω
composed of three planar subdomains ΩE , ΩN , and ΩS . In the simplified model in which the geomagnetic
field is assumed to be dipole, ΩN and ΩS are disks of radius r0 and ΩE is a ring r0 < r < 1. In this case
all three subdomains are glued together along a circle of radius r0. In the general case the subdomains
are not glued to one another in the geometric sense, although the corresponding points on the boundaries
of the three subdomains are interrelated by the equipotentiality condition. This circumstance slightly
complicates the statement of the conjugation conditions below as compared with the above-indicated
particular case.

In order to use the Sobolev embedding theorem, we suppose that each of the subdomains ΩE , ΩN ,
and ΩS is a connected union of finitely many domains each of which is starlike with respect to some disk.
The subdomains ΩN and ΩS are supposed to be simply connected. They are bounded by closed smooth
curves ΓN and ΓS . The subdomain ΩE is homeomorphic to a ring. Its interior boundary ΓE and the
exterior boundary Γ are closed smooth curves as well.
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November–December, 2002. Original article submitted May 14, 2002.

0037-4466/02/4306–1055 $27.00 c© 2002 Plenum Publishing Corporation 1055



We use the arclength l as a coordinate on each boundary and let the indices n and l mark the normal
and tangential components of vectors. There is a smooth one-to-one correspondence between the points
on ΓE , ΓN , and ΓS which is given by the functions lN (lE) and lS(lE). Without loss of generality we may
assume that lN (0) = lS(0) = 0. It is convenient to write down the constraints on the functions as follows:

0 < c1 ≤
dlN

dlE
≤ c2 < ∞, 0 < c1 ≤

dlS

dlE
≤ c2 < ∞. (1)

The outward normals are regarded as positive, while the positive direction of a tangent keeps a domain
on the left, except for ΓE on which we choose the opposite direction of l so that the directions on ΓN

and ΓS agree. Otherwise the functions in (1) would have the opposite sign.
The current density J and the electrical field strength E in each subdomain satisfy the law of

conservation of charge and the Faradey law of electro-magnetic induction:

∂Jx

∂x
+

∂Jy

∂y
= Q(x, y),

∂Ey

∂x
− ∂Ex

∂y
= G(x, y), (2)

where Q(x, y) and G(x, y) are given functions; usually G = 0.
The components of E and J are connected by the Ohm law(

Jx

Jy

)
=

(
σxx σxy

σyx σyy

) (
Ex

Ey

)
. (3)

The components of the conductivity tensor σ are given functions of coordinates. By the Hall phenomenon,
the tensor σ is asymmetric.

The boundary condition on the exterior boundary Γ has the form(
Jn −

∂

∂l
(A(l)El)

)∣∣∣∣
Γ

= 0, (4)

where A(l) is a given function.
This boundary condition corresponds to extraction of a narrow near-boundary strip of high conduc-

tivity, and for A = 0 becomes the condition on an ideal isolator.
The corresponding points on the boundaries ΓE , ΓN , and ΓS of the three subdomains ΩE , ΩN ,

and ΩS are interrelated by the equipotentiality condition. Therefore, from the law of conservation of
charge and the induction equation we obtain the following conjugation conditions [5]:

Jn(lE) +
dlN

dlE
Jn(lN ) +

dlS

dlE
Jn(lS) = 0, (5)

El(lE)− dlN

dlE
El(lN ) = 0, El(lE)− dlS

dlE
El(lS) = 0. (6)

Here the boundary values of the components of vectors are the boundary values in the subdomain
with the same superscript E, N , or S as that of the coordinate l; moreover, the correspondence between
the points ΓE , ΓN , and ΓS is given by the functions lN (lE) and lS(lE).

In the particular case when the subdomains are glued together geometrically, we can introduce the
unified arclength lN = lE = lS on the boundaries ΓE , ΓN , and ΓS , and hence all derivatives in (5) and (6)
are equal to 1. Therefore, condition (5) amounts to the vanishing of the sum of the current densities of
the three subdomains on the common boundary and condition (6) becomes the continuity condition for
the tangential component of the electric field strength upon passage through the boundary.

For solvability of the boundary value problem (2)–(6), the right-hand side must satisfy the conditions∫∫
Ω

Qdxdy = 0,

∫∫
ΩN

G dxdy =
∫∫
ΩS

G dxdy (7)
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which result from integration of the first equation in (2) over Ω and the second equation over ΩN and ΩS

in view of homogeneity of the boundary condition (4) on the exterior boundary and the conjugation
conditions (5) and (6) on the interior boundary. Below we do not indicate the domain of integration if
this is the whole domain Ω.

3. Uniqueness of a solution. In the next sections we state a new problem whose solution is
a solution to the original problem (2)–(6). Existence of a solution to the new problem implies existence
of a solution to the original problem, whereas uniqueness must be proven independently.

We state the necessary constraints on the distribution of σ inside the domain and on the integral
conductivity distribution in the near-boundary strip predetermined by the boundary condition (4).

The conductivity tensor σ is supposed to be uniformly bounded in Ω and its symmetric part is
assumed uniformly positive definite. It is convenient to write down these properties as follows: There
exist nonzero finite positive numbers c3 and c4 such that

λ ≥ c3, det(σ)/λ ≤ c4 (8)

for all points of the domain, where det(σ) is the determinant of the matrix σ and λ is the least eigenvalue
of the symmetric matrix (σ + σT )/2. In the practically important particular case when the conductor is
gyrotropic the functions subject to (8) are the Pedersen and Cowling conductivities. It is easy to validate
the relations

σxx ≥ λ, σyy ≥ λ

as well as uniform boundedness of all entries of σ, provided that (8) is satisfied.
We suppose that A(l) in the boundary condition (4) determining a near-boundary strip satisfies the

conditions
0 < c5 ≤ A(l) ≤ c6 < ∞. (9)

Lemma 1. Suppose that the coefficients σ and A(l) satisfy (8) and (9) in a three-sheeted domain Ω
whose subdomains ΩE , ΩN , and ΩS are bounded by piecewise smooth curves. Then problem (2)–(6) has
at most one smooth solution.

Suppose the contrary; i.e., suppose that there are two solutions. Then their differences E and J
satisfy (2)–(6) with the zero right-hand sides Q = 0 and G = 0.

In the proof we use the function V :
E = − gradV. (10)

This function exists in each subdomain, since the vector field E is irrotational by the second equation
of (2).

Since the adding a constant to V does not change gradV , we may assume that V = 0 at the point
lE = 0. Similarly, we add a constant to V in ΩN and ΩS so that V = 0 on ΓN and ΓS at the points
lN = 0 and lS = 0.

By (10), the function V on ΓE is given by the integral

V (lE) = −
lE∫
0

El(̃l) d̃l.

It follows from (6) that

−
lN∫
0

El(̃lN ) d̃lN = −
lE∫
0

El(̃lE) d̃lE

and hence
V (lN ) = V (lE). (11)
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Similarly,
V (lS) = V (lE); (12)

i.e., V is continuous in the whole domain Ω.
By assumption E is not identically zero; therefore, we can find a number ε > 0 and a point such

that |E| = 2ε. In view of smoothness of E, we can choose a neighborhood of this point in which |E| > ε.
Denote the area of this neighborhood by x2

0.
Consider the following integral over the whole domain Ω:

w =
∫∫

JTE dxdy.

Using (10), we can rewrite the integral as

w =
∫∫

(gradV )T σ gradV dxdy. (13)

We can replace σ in this integral with its symmetric part, since we in fact calculate the quadratic form

w =
∫∫

(gradV )T σ + σT

2
gradV dxdy.

By positive definiteness of (σ + σT )/2, (8), the integrand is nonnegative. Therefore, the integral over the
whole domain Ω is not less than the integral over the selected neighborhood; hence,

w ≥ x2
0ε

2c3 > 0. (14)

Now, we turn to the integral written down in the shape (13). Transform identically the integrand:

w =
∫∫

(−V div(σ gradV ) + div(V σ gradV )) dxdy.

The first term equals V div(σE) = V div J = 0, since the first equation of (2) holds with the zero right-
hand side. Transform the remaining integral by using the Gauss–Ostrogradskĭı theorem in each of the
subdomains:

w =
∮
Γ

(σ gradV )n dl +
∮
ΓE

V (σ gradV )n dlE +
∮

ΓN

V (gradV )n dlN +
∮
ΓS

V (σ gradV )n dlS .

The sign of the second integral remains positive, despite dlE has the opposite sign, since the direction of
traversing ΓE has changed. Returning to (10) and (3), we obtain

w = −
∮
Γ

V Jn dl −
∮
ΓE

V Jn dlE −
∮

ΓN

V Jn dlN −
∮
ΓS

V Jn dlS .

By (11) and (12), the integrands V in the last three integrals are the same; so the sum of the integrals
equals ∮

ΓE

V

{
Jn(lE) +

dlN

dlE
Jn(lN ) +

dlS

dlE
Jn(lS)

}
dlE .

Here we simultaneously changed the signs of dlN and dlS and the directions of traversing ΓN and ΓS .
The sum in braces vanishes by (5). We have

w = −
∮
Γ

V Jn dl. (15)
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By the boundary condition (4), we can transform this integral as follows:

w = −
∮
Γ

V
∂

∂l

(
A(l)El

)
dl.

We transform identically the integrand:

w =
∮
Γ

(
− ∂

∂l
(V A(l)El) +

∂V

∂l
A(l)El

)
dl.

The integral of the first term vanishes, since integration is carried over a closed contour. We elimi-
nate V in the remaining integral by means of (10):

w = −
∮
Γ

A(l)E2
l dl.

From strict positivity of A(l), (9), we obtain

w ≤ −c5

∮
Γ

E2
l dl ≤ 0

which contradicts (14); hence, the assumption that E is different from the identical zero is false. Thereby
Lemma 1 is proven.

4. Symmetrization of the boundary value problem. If, as it is usual for G ≡ 0, we pass
from (2) and (3) to an equation in the electric potential V of (10),

− ∂

∂x

(
σxx

∂V

∂x
+ σxy

∂V

∂y

)
− ∂

∂y

(
σyx

∂V

∂x
+ σyy

∂V

∂y

)
= Q,

or to an equation in the stream function for Q ≡ 0 then, owing to σxy 6= σyx, we come to boundary value
problems with non-self-adjoint operators.

We obtain self-adjoint operators if, according to [3], we introduce a pair F , P of potentials such that

E = −SσT gradF + Srot P, (16)

where the matrix S is defined by the symmetric part of σ,

2S−1 = σ + σT , (17)

and the vector rot P = (∂P/∂y,−∂P/∂x) comprises only the x- and y-components of the vorticity of the
vector function which has only the z-component P .

Omitting the heuristic arguments which are similar to [3], we consider some quadratic functional
and prove that minimizing it corresponds to solving the original problem (2)–(6). In Section 8 we show
why this functional is called the energy functional. The statement of the problem with a self-adjoint
operator arises as the minimization condition for the energy functional. The shape of equations and
boundary conditions for the new functions F and P corresponds to substitution of (16) for E in the
original problem (2)–(6) supplemented with the so-called principal boundary conditions (19)–(22) for F
and P which are in a sense adjoint to (4)–(6). In particular, equations (2) and (3) inside the domain take
the form

div
(
−σSσT gradF + σ Srot P

)
= Q, rotz

(
−SσT gradF + Srot P

)
= G. (18)
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5. The energy space. We consider a pair F , P of smooth functions satisfying the following
so-called principal conditions which are in a sense adjoint to (4)–(6). On the exterior boundary Γ we
have

F (l)−
l∫

0

P (̃l)
A(̃l)

d̃l = 0,

∮
Γ

F (l) dl = 0,

∮
Γ

P (l)
A(l)

dl = 0. (19)

We require F to be continuous on the interior boundaries:

F (lE) = F (lN ) = F (lS), (20)

while P is subject to a condition similar to the summation condition for the stream functions:

P (lE) = P (lN ) + P (lS). (21)

One more condition means the vanishing of the mean of P (lN ) but after been mapped to ΓE rather
than considered on the curve ΓN itself. This condition eliminates an arbitrary additive constant to within
which the function P is actually determined in ΩN :∮

ΓN

P (lN )
dlE

dlN
dlN = 0. (22)

We define the energy inner product as[(
u
v

)
,

(
F
P

)]
=

∫∫ (
gradu
rot v

)T (
σsσT −σs
−sσT s

) (
gradF
rotP

)
dxdy. (23)

This is a symmetric bilinear form. Prove its positive definiteness on smooth functions. First, consider
the auxiliary integral ∫∫

(gradF )T rotP dxdy. (24)

Transform identically the integrand:

(gradF )T rotP = − rotz(P gradF ) + P rotz(gradF ).

The second summand vanishes identically. Using the Gauss-Ostrogradskĭı formula, we can transform the
integrals of the first summand into boundary integrals, coming to

−
∮

ΓN

P
∂F

∂lN
dlN −

∮
ΓS

P
∂F

∂lS
dlS +

∮
ΓE

P
∂F

∂lE
dlE −

∮
Γ

P
∂F

∂l
dl. (25)

Gather the three integrals over interior boundaries by using (20):∮
∂F

∂lE
(P (lE)− P (lN )− P (lS)) dlE .

The integrand vanishes by (21). In (25) we are left only with the integral over the exterior boundary. We
transform it by using the boundary conditions (19) which amount to the following equality on smooth
functions: (

P −A(l)
∂F

∂l

)∣∣∣∣
Γ

= 0. (26)

We obtain

−
∮
Γ

P 2

A(l)
dl. (27)
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By positivity of A(l), (9), this integral is nonpositive. Therefore, so is the whole integral (24). Add
the doubled integral (24) to the quadratic form (23). The matrix of the quadratic form of the integrand
takes the shape (

σSσT I − σS
I − SσT S

)
, (28)

where I is the identity (2 ∗ 2)-matrix.
It is easy to prove [3] that this symmetric matrix is positive definite and its four eigenvalues lie in

the interval
1
2

√
c3

c4
, 2

√
c4

c3
, (29)

provided that S is defined by (17) and σ satisfies (8).
Therefore, the value of the modified quadratic form is estimated from below and above by∫∫ {

(gradF )2 + (rotP )2
}

dxdy

with the respective coefficients (29).
Since the value of the auxiliary integral (27) is nonpositive, for the original quadratic form we obtain[(

F
P

)
,

(
F
P

)]
≥ 1

2

√
c3

c4

∫∫
{(gradF )2 + (rotP )2} dxdy, (30)

[(
F
P

)
,

(
F
P

)]
≤ 1

2

√
c4

c3

∫∫ {
(gradF )2 + (rotP )2

}
dxdy + 2

∮
Γ

P 2

A(l)
dl. (31)

Observe that in the two-dimensional case we have

(rotP )2 = (gradP )2. (32)

To continue estimation from below, we consider the functions F and P separately. We use the
following inequality for ΩE which results from the theorem about equivalent norms of W

(1)
2 (Ω) [7, 8]:(∫∫

ΩE

F 2 dxdy

)1/2

≤
√

c7

{∣∣∣∣∮
Γ

a(l)F dl

∣∣∣∣ +
(∫∫

ΩE

(gradF )2 dxdy

)1/2}
, (33)

where the function a(l) is such that the linear functional is bounded and does not vanish for F (x, y) ≡ 1.
Take a(l) = 1. By the second condition of (19), the integral over Γ vanishes and from (33) we obtain∫∫

ΩE

F 2 dxdy ≤ c7

∫∫
ΩE

(gradF )2 dxdy. (34)

From the embedding theorem of W
(1)
2 (ΩE) into L2(ΓE) and (34) we derive∮

ΓE

F 2 dlE ≤ c8

∫∫
ΩE

(gradF )2 dxdy. (35)

Consider the integral of F over ΓE . Estimate it using the Cauchy–Bunyakovskĭı inequality and (35):∣∣∣∣∮
ΓE

F dlE
∣∣∣∣ ≤ (∮

ΓE

F 2 dlE
)1/2(∮

ΓE

dlE
)1/2

.
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Since ΓE has finite length, from this inequality and (35) we obtain∣∣∣∣∮
ΓE

F dlE
∣∣∣∣ ≤ (

c8

∣∣ΓE
∣∣ ∫∫

ΩE

(gradF )2 dxdy

)1/2

. (36)

Now, we can apply (33) to F in ΩN and ΩS , since by (20) F preserves its value upon passage from ΓE

to ΓN or ΓS . We can rewrite the integral on the left-hand side of (36) as∮
ΓS

F
(
lE

(
lS

))dlE

dlS
dlS . (37)

It has the shape of the linear functional in (33) with the function

a(l) =
dlE

dlS

strictly positive and bounded by virtue of (1). Therefore, for F ≡ 1 the integral does not vanish and
hence we can use an inequality like (33) in ΩS with another constant c9. Since (36) holds for (37), we
find that(∫∫

ΩS

F 2 dxdy

)1/2

≤ c9

((
c8

∣∣ΓE
∣∣ ∫∫

ΩE

(gradF )2 dxdy

)1/2

+
( ∫∫

ΩS

(gradF )2 dxdy

)1/2)
.

Take the square of this inequality, gather the integrals in one, and increase it by adding the integral of
a nonnegative function over ΩN to obtain∫∫

ΩS

F 2 dxdy ≤ c10

∫∫
(gradF )2 dxdy, (38)

where c10 = 2c2
9 max(c8|ΓE |, 1). Therefore, for F in ΩS we deduce an inequality similar to (34) but with

integration over all subdomains on the right-hand side.
We can establish the same inequality for ΩN with some constant c11. Summing up, we arrive at the

following inequality for the whole domain Ω:∫∫
F 2 dxdy ≤ (c7 + c10 + c11)

∫∫
(gradF )2 dxdy. (39)

Apply to P the inequality like (33) with a(l) = 1/A(l). The function a(l) satisfies the necessary
conditions by (9). The linear functional in the inequality of (33) vanishes on the set of functions P in
question by virtue of the last equality of (19). Therefore, for P we obtain an inequality similar to (34)
together with the following estimate which differs from (36) only in the value of the constant:∣∣∣∣∮

ΓE

P (lE) dlE
∣∣∣∣ ≤ c12

(∫∫
ΩE

(gradP )2 dxdy

)1/2

. (40)

Applying (22), in ΩN we express the integral over ΓS for ΩS by using (21):∮
ΓS

P (lS)
dlE

dlS
dlS =

∮
ΓS

P (lE(lS))
dlE

dlS
dlS −

∮
ΓS

P (lN (lE(lS)))
dlE

dlS
dlS . (41)
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Transform the integrals on the right-hand side:∮
ΓE

P (lE) dlE −
∮

ΓN

P (lN )
dlE

dlN
dlN .

The last integral vanishes by (22).
Using (40), we obtain an estimate for the left-hand side of (41) which enables us to apply (33)

and obtain an inequality for P in ΩS similar to (38). Combining the inequalities obtained in the three
subdomains, we arrive at an inequality for P in the whole domain Ω which is similar to (39). Denote by
c13 the least constant in the inequalities like (39) for F and P . Using (32) we can continue estimate (30):[(

F
P

)
,

(
F
P

)]
≥ 1

2c13

√
c3

c4

∫∫
(F 2 + P 2) dxdy. (42)

We have thus proven positive definiteness of the quadratic form that corresponds to the bilinear
form (23). Since the latter is symmetric, we can use the quadratic form as an inner product on the set
of pairs F , P of smooth functions satisfying (19)–(22).

Now, we continue estimate (31) from above for the value of the quadratic form corresponding to the
bilinear form (23).

By boundedness of A(l), (9), and the embedding theorem of W
(1)
2 (ΩE) into L2(Γ), we can estimate

the absolute value of the last integral in (31) from above by

c14

c3

∫∫
ΩE

(gradP )2 dxdy.

In view of (32), we can include this quantity in the first term on the right-hand side of (31) by changing
the value of the constant:[(

F
P

)
,

(
F
P

)]
≤

(
1
2

√
c4

c3
+ 2

c14

c3

) ∫∫ {
(gradF )2 + (rotP )2

}
dxdy. (43)

Inequalities (30), (42), and (43) mean the equivalence of the energy norm and the sum of the norms
of F and P as elements of W

(1)
2 (Ω).

6. Minimum of the energy functional. By the energy functional we mean

W (F, P ) =
1
2

[(
F
P

)
,

(
F
P

)]
−

∫∫
(FQ + PG) dxdy. (44)

We suppose that the given functions Q and G have finite norms as elements of L2(Ω). Therefore,
the linear part of the energy functional is a bounded linear functional and, by Riesz’s theorem, it is
representable as the inner product with some element of the energy space:∫∫

(FQ + PG) dxdy =
[(

F0

P0

)
,

(
F
P

)]
.

Since the quadratic part of W (F, P ) is positive definite, a minimum exists and is unique. The
minimum is attained at (F, P ) = (F0, P0).

7. Weak solution. Minimality of W (F, P ) means that

d

dt
W (F + tu, P + tv)

∣∣∣∣
t=0

= 0
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for arbitrary functions u and v in the energy space. According to (44), this implies[(
u
v

)
,

(
F
P

)]
−

∫∫
(uQ + vG) dxdy = 0.

Consider this minimality condition for W (F, P ) under the additional assumption that the functions F
and P are smooth. In the bilinear form defined by (23), we then can integrate by parts in each of the
three subdomains. We use the abbreviations E, (16), and J = σE, (3):∫∫

{u(div J−Q) + v(rotz E−G)} dxdy +
∮
Γ

(−uJn − vEl) dl

+
∮
ΓE

(−uJn + vEl) dlE +
∮

ΓN

(−uJn − vEl) dlN +
∮
ΓS

(−uJn − vEl) dlS = 0. (45)

The opposite sign of vEl in the integral over ΓE relates to the choice of the positive direction on ΓE .
By the arbitrariness of u and v inside the subdomains, from (45) we routinely deduce the equalities

div J = Q, rotz E = G. (46)

Therefore, (45) reduces to the vanishing of the sum of the boundary integrals. Since u and v on the
exterior boundary Γ are not connected with their values on the interior boundary, we have one more
identity ∮

Γ

(uJn + vEl) dl = 0 (47)

which can be written as follows on using (19), or (26) equivalent to the former in the case of smooth
functions: ∮

Γ

(
uJn + A(l)

∂u

∂l
El

)
dl = 0.

We can integrate the second term by parts and obtain∮
Γ

u

(
Jn −

∂

∂l
(A(l)El)

)
dl = 0. (48)

We collect the remaining three integrals over the interior boundary in (45) by expressing the three
functions u(lN ), u(lS), and v(lE) in terms of u(lE), v(lN ), and v(lS) by means of (20) and (21) valid
for u and v in the energy space. The last three functions are arbitrary; only the mean of v(lN ) is fixed
by (22). Thus, from (45) we obtain three more independent identities:∮

ΓE

u(lE)
{

Jn(lE) +
dlN

dlE
Jn(lN ) +

dlS

dlE
Jn(lS)

}
dlE = 0, (49)

∮
ΓN

v(lN )
{
−El(lN ) +

dlE

dlN
El(lE)

}
dlN = 0, (50)

∮
ΓS

v(lS)
{
−El(lS) +

dlE

dlS
El(lE)

}
dlS = 0. (51)

Since the function u(lE) is arbitrary, (49) implies validity of the conjugation condition (5).

1064



By the arbitrariness of v(lS), from (51) we deduce the second condition of (6).
We return to the first condition in (6) later. Now, we turn to (48).
The function u(l) on Γ has zero mean in view of the second condition of (19). Denote by ũ(l) the

boundary value of a function ũ(x, y) which, unlike u(x, y), may fail to satisfy the second condition of (19).
According to condition (26) equivalent to (19), we construct the function v(l) on Γ as follows:

v(l) = A(l)
∂ũ(l)

∂l
,

and extend it smoothly to ΩE so that v(x, y) vanishes on ΓE . Then we can extend v ≡ 0 to ΩN and ΩS .
For every such pair ũ, v we can construct a pair u = ũ− u0, v which satisfies all conditions (19)–(22); to
this end, we take the constant u0 to be

u0 =
1
|Γ|

∮
Γ

ũ dl.

Insert u(l) = ũ(l)− u0 in the identity (48) under consideration:∮
Γ

ũ

(
Jn −

∂

∂l
(A(l)El)

)
dl − u0

∮
Γ

Jn dl + u0

∮
Γ

∂

∂l
(A(l)El) dl = 0. (52)

The last integral vanishes identically, since the curve Γ is closed. Integrate the above-proven first
equality of (46) separately over the subdomains ΩE , ΩN , and ΩS and then apply the Gauss–Ostrogradskĭı
formula to the left-hand sides: ∮

Γ

Jn dl +
∮
ΓE

Jn dlE =
∫∫
ΩE

Qdxdy,

∮
ΓN

Jn(lN ) dlN =
∫∫
ΩN

Qdxdy,

∮
ΓS

Jn(lS) dlS =
∫∫
ΩS

Qdxdy.

Validity of (5) is already proven. Therefore, summing up these equalities, we obtain∮
Γ

Jn dl =
∫∫

Qdxdy.

The right-hand side vanishes by (7). Therefore, the factor of u0 in (52) vanishes. The function ũ(l) in the
identity resulting from (52) is arbitrary; therefore, its factor equals zero; i.e., the boundary condition (4)
is valid.

Now, consider identity (50). Denote by ṽ(lN ) the boundary value of an arbitrary function ṽ(x, y)
which, unlike v(x, y), may fail to satisfy condition (22). Here we are interested only in the functions ṽ
vanishing inside ΩS and on the exterior boundary Γ and in the identically zero functions u. In this case
condition (21) becomes equivalent to ṽ(lE) = ṽ(lN ). This pairs of functions satisfy the principal bound-
ary conditions (19)–(21). For each function ṽ(x, y) we can construct a function v(x, y) by subtracting
a constant v0 from ṽ(x, y) in ΩN :

v0 =
1
|ΓE |

∮
ΓN

ṽ(lN )
dlE

dlN
dlN ,

and subtracting from ṽ(x, y) in ΩN some function that results from interpolating v0 on ΓE and zero on Γ
into ΩE . This pair u, v satisfies all principal boundary conditions (19)–(22). Inserting these expressions
in (50), we obtain∮

ΓN

ṽ(lN )
{
−El(lN ) +

dlE

dlN
El(lE)

}
dlN − v0

∮
ΓN

El(lN ) dlN + v0

∮
ΓE

El(lE) dlE = 0. (53)
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Integrate the above-proven second equality of (46) separately over ΩN and ΩS and then apply the
Gauss–Ostrogradskĭı formula to the left-hand sides:∮

ΓN

El(lN ) dlN =
∫∫
ΩN

G dxdy,

∮
ΓS

El(lS) dlS =
∫∫
ΩS

G dxdy.

Subtracting these equalities and using the second of the above-proven equality (6), we find that∮
ΓN

El(lN ) dlN −
∮
ΓE

El(lE) dlE =
∫∫
ΩN

G dxdy −
∫∫
ΩS

G dxdy.

The right-hand side vanishes by condition (7) on the right-hand sides which is necessary for solvability
of the problem. We obtain ∮

ΓE

El(lE) dlE −
∮

ΓN

El(lN ) dlN = 0.

Therefore, the factor of v0 in (53) vanishes and, by the arbitrariness of ṽ(lN ), we obtain

El(lE) =
dlN

dlE
El(lN );

i.e., we have proven the first equality of (6). Thus, we completed validation of all boundary conditions (4)–
(6) that result from minimizing the energy functional. These boundary conditions are called natural, as
opposed to the principal boundary conditions (19)–(22).

Thus, the functions F and P providing a minimum to the energy functional enable us to construct,
using (16) and (3), vector functions E and J that are solutions to the original boundary value problem (2)–
(6), provided that F and P are additionally assumed smooth. By Lemma 1, such a solution is unique.
We can routinely [3] prove the converse assertion: a solution to the boundary value problem provides
a minimum to the energy functional.

In the general case, a pair F , P of functions providing a minimum to the energy functional has the
finite energy norm equivalent to the W

(1)
2 (Ω) norm. We call such a pair F , P a weak solution to problem

(2)–(6), (19)–(22), where E and J are considered as the notations for (16) and (3).
By (16), the equations (2) and (3) for F and P themselves have the shape (18). We can rewrite the

operator of (18) as the product of first-order operators:(
div σ
rotz

)
S(σT grad, rot)

(
F
P

)
=

(
Q
G

)
.

This operator has the shape of LT SL, since the operators div and rotz are adjoint to grad and rot
while the matrix S is symmetric. The operators of this form are called adjointly factorized. This property
enables us to simplify our approach to grid models [9] essentially.

The existence and uniqueness of a weak solution follows from the result of Section 6 about the
existence and uniqueness of an element of the energy space which minimizes the value of the energy
functional. The functions J and E have finite L2(Ω) norms and constitute a weak solution to (2)–(6).

8. Thermodynamics. For S like (17) we can rewrite the quadratic form (23), using (16) and (3),
as ∫∫

ETJ dxdy.

The integrand is the Joule dissipation density; i.e., the integral equals the thermal energy produced in
a conductor in unit time due to the electric current flux. Therefore, this inner product is called the
energy inner product. Considering

S−1 = (σ + σT )/(2T ) (54)
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in place of (17), the energy quadratic form equals∫∫
1
T

ETJ dxdy,

i.e., the entropy production rate for a given distribution of the absolute temperature T (x, y). The specific
shape of the matrix S was used only in estimation of the interval (29) containing the eigenvalues of the
matrix (28). In [2], using a special choice of the coefficient with which the auxiliary integral (24) is
added to the quadratic form (23), the author obtained a similar estimate for an arbitrary symmetric and
uniformly (in Ω) positive definite S. Positivity of the absolute temperature and the conditions on σ, (8),
guarantee this property for S given by (54).

Thus, from the viewpoint of the nonequilibruim thermodynamics the square of the energy norm has
the meaning of the entropy production rate.

9. Other boundary value problems. We can impose simpler conditions on the exterior boundary
in comparison with (4):

Jn|Γ = 0 (55)

if an ideal isolator is beyond the boundary or

El|Γ = 0 (56)

if an ideal conductor is beyond the boundary. It is natural to call these problems the first and second
boundary value problems as in the case of a schlicht domain [3]. We now list the changes to be made in
the statements and proofs given above for the boundary condition (4).

The conjugation conditions (5) and (6) on the interior boundary remain the same. The necessary
constraints (7) on the right-hand sides for solvability of the problem remain the same for the first problem
and become ∫∫

ΩN

G dxdy +
∫∫
ΩE

G dxdy = 0,

∫∫
ΩN

G dxdy =
∫∫
ΩS

G dxdy (57)

for the second problem.
The proofs of uniqueness of a solution to the problems become slightly simpler, since integral (15)

has the zero integrand for either of the conditions (55) and (56).
The principal boundary conditions (20)–(22) on the interior boundary remain the same. In the first

boundary value problem we replace condition (19) on the exterior boundary with

P |Γ = 0,

∮
Γ

F dl = 0, (58)

and in the second, with

F |Γ = 0,

∮
Γ

P dl = 0. (59)

Observe that the vanishing of the mean values in (58) and (59) serves for elimination of arbitrary
additive constants to within which the functions F and P are actually determined. As it is usual for the
Neumann problem, we could fix the mean value of the function F or P over the domain; however, in this
case we would need Poincaré’s inequality in a nonschlicht domain. Using an inequality like (33) seems
to be simpler, especially as the linear functional with the function a(l) = 1 in it takes the zero value for
both functions F and P satisfying (58) or (59). Note that we could use Friedrichs’ inequality instead
of (33) for P in the first problem and for F in the second.

Since the last integral in (25) vanishes for either of the conditions (58) and (59), the auxiliary
integral (24) vanishes. Therefore, the boundary integral in the upper estimate (31) for the quadratic
form goes away and there is no need to estimate it for obtaining (43), wherein we would have c14 = 0.
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Studying a weak solution, we only modify the analysis of identity (47). Validity of (55) or (56) is
deduced from this identity due to the arbitrariness of F to within (58) or P to within (59) on this bound-
ary. We avoid fixing the mean values of these functions over Γ in the same way by adding an arbitrary
constant whose coefficient, as in (52), turns out to be zero in view of the conditions (7) or (57) on the
right-hand sides.

Thus, we establish that solving the first (55) or the second (56) boundary value problems is equivalent
to minimizing the energy functional (44) in the corresponding energy space.
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